Vakuumtechnik, Herstellung eines Ultrahochvakuums

Aus Mhfe-wiki
Wechseln zu: Navigation, Suche

Quelle: Wikipedia

Auf der Erde kann man ein Vakuum herstellen, indem man einen abgeschlossenen Hohlraum, den Rezipienten, vom darin enthaltenem Gas mittels geeigneter Vakuumpumpen befreit.

Ultrahochvakuum (UHV)

In der angewandten Physik bedient man sich mehrerer Pumpentypen um ein Ultrahochvakuum zu erzeugen. Zunächst wird mit mechanisch wirkenden Pumpen (z. B. Drehschieberpumpe) ein Vordruck im Rezipienten im Bereich von 10-2 bis 10-3 Millibar erzeugt. Abhängig von der Größe des Rezipienten und der Pumpleistung der Pumpen dauert dies im Normalfall einige Minuten. Als nächstes erzeugen Turbomolekularpumpen in einem mindestens mehrere Stunden dauernden Prozess ein Hochvakuum im Druckbereich von ungefähr 10-7 mbar. Dieser Druck lässt sich nicht mehr ohne weitere Hilfsmittel verringern, da die ständige Desorption von adsorbiertem Wasser und anderen Verbindungen, wie zum Beispiel Kohlenwasserstoffen, mit niedrigem Dampfdruck, auch bei unendlicher lang andauernder Pumpleistung dies verhindert.

Die Desorptionsprozesse werden beschleunigt, wenn die Kammer durch direkte Heizung der Kammerwände und indirekte thermische Erwärmung der inneren Oberflächen auf eine Temperatur gebracht wird, die mindestens über dem Siedepunkt von Wasser, möglichst aber deutlich höher liegt. Wichtigstes Kriterium der Temperaturhöhe ist die Temperaturbeständigkeit der eingebauten Komponenten, wie zum Beispiel Durchführungen für elektrische Verbindungen sowie für Sichtfenster. Übliche Ausheiztemperaturen liegen zwischen 130 °C und über 200 °C.

Das in hohem Maße desorbierende Wasser wird während des Ausheizens mittels der Turbomolekularpumpen größtenteils abgepumpt, ebenso wie eventuelle Kohlenstoff-Kontaminationen. Dieser Prozess dauert minimal 24 Stunden, bei Kammern mit vergleichsweise komplex angeordneten inneren Oberflächen durch angebaute Apparaturen wird üblicherweise nach zwei bis drei Tagen die Heizung abgeschaltet.

Zum Erreichen des Ultrahochvakuums werden nicht-mechanische Pumpen zum Einsatz gebracht. Eine Ionengetterpumpe pumpt durch Ionisation und Einfangen der Restgasmoleküle in Titanröhrchen in einem Druckbereich von 1x10-7 Millibar bis 10-10 Millibar. Hier zeigt sich, dass die Pumpleistung nur dann ausreichend ist, wenn das Ausheizen vorher den Restgasdruck ausreichend vermindert hat. Eine Titansublimationspumpe arbeitet über thermisch in die Kammer verteiltem Titandampf, der sich durch eine hohe chemische Reaktivität auszeichnet und Restgasatome an sich und der (kalten) Kammerwand bindet, so dass sich folglich der Restgasdruck weiter vermindert. Der mit diesem oben beschriebenen Verfahren minimal erreichbare Restgasdruck liegt im Bereich von 10-11 Millibar.

Ergänzung (WIK, Infos von Ralph Böspflug MVS, 2014): Die Oberfläche bzw. deren Belegung beeinflusst sehr stark den erreichbaren Druckabfall. Besonders einige Salze (z.B. Salpeter) können sehr viel Wasser aufnehmen, da sie stark hygroskopisch sind.